Offshore Wind -High Cost is the Key Barrier to Break

Suzion Energy Ltd.

By : Harsh Vardhan Bhatnagar (<u>harshvardhan.bhatnagar@suzlon.com</u>) VP Offshore Projects Development , Suzlon Energy Ltd. On 25th April 2013

SUZLON POWERING A GREENER TOMORROW	
	REPOWER'
	Wind turbine manufacturer (Subsidiary of Suzlon)
dia, USA, China, Australia, Europe, atin America, South Africa	China, Europe (mainly Germany), Canada, USA
3,600	~1,700
ow to Medium capacity WTGs 00kW – 2.25 MW) - onshore	Medium to High capacity WTGs (2.0 MW – 6.15 MW incl. offshore)
	POWERING A GREENER TOMORROW

Infrastructure

Access roads, power evacuation, grid interconnection and power lines Equipment Supply Onshore and Offshore WTG & Component design, development and manufacturing

Services

EPC, project execution, installation, commissioning and O&M

Offshore - Preamble

OFFSHORE WIND FARMS WORK IN THE SAME WAY AS THEIR ONSHORE COUNTERPARTS, BUT HIGHER /STRONGER WINDS MEANS THEY GENERATE MORE ENERGY . HOWEVER , IT IS MORE EXPENSIVE TO BUILD AND RUN OFFSHORE WIND FARM DUE TO HARSH AND UNPREDICTABLE MARINE ENVIRONMENT . EACH OFFSHORE WIND FARM PRESENTS UNIQUE CHALLENGE DUE TO ITS LOCATION AND SEA BED CONDITIONS BEING COMPLETY DIFFERENT .

Current Offshore Market Outlook

Suzion Energy Ltd.

Continent	Country	No. of Farms 🛛 🖊	No. of Turbines	Capacity Operational *			
	United Kingdom	26	750	2515.7			
	Denmark	15	403	864.5			
	Netherlands	4	128	246.8			
	Germany	8	56	220.3			
Europe	Belgium	~	73	268.8			
Luiope	Sweden	5	C-Power 75	163.7			
	Finland	2	9	26.3			
	Ireland	1	7	25.2			
	Norway	1	1	2.3			
	Portugal	1	1	2			
Asia	China	3	92	251.3			
Total		69	1595	4586.9			
* Data as on 30	June 2012 for Europe and N	ov 2012 for China					
Sources : EWEA	A & Wikipedia						
14 offshore projects currently under construction of 80 7%							

capacity totaling 3.3 GW Prep. Work in progress on 7 other projects with a cumulative capacity of 1,174 MW. 2013 installations expected 1,400 MW 2014 installations around 1,900 MW.

Offshore Turbines Grid Connected in 2012

Offshore Wind Farm Cost

[The values behind the wind farm name indicate the distance from shore [km], the water depth [m] and the turbine size [MW]; The size of the wind farms [MW installed capacity] is indicated through the area of the bubble; The framed wind farm names indicate that these wind farms are under construction or results from this study and thus uncoupled from the x-

Capital cost w. r. to Distance/Depth/OWT Capacity

Note: Bubble diameter proportion to wind farm capacity The values utilised for the chart are based on published information - typically contractor or developer press releases and / or guidance from the relevant project owner through direct consultation. The values have been adjusted for currency, inflation and scope differences. Adjustment for scope differences has been made in cases where grid connection including offshore substation have been provided by a third-party. In addition, reductions have been made in cases where Warranty, Operational and Maintenance costs have been included in the published value. The values exclude developmental and operational expenditure. Source: GL - Garrad Hassan

Offshore Cost Component Breakup

Suzion Energy Ltd.

Source : UK Renewable Advisory Board Report By BVG Associates

Offshore Wind Cost of Energy

Further to higher capital costs, offshore wind energy currently has a higher cost of energy than comparable technologies.

This cost of energy can be broadly calculated as the sum of all up-front annualized capital equipment costs and operations and maintenance costs over the life of the project, divided by the total energy output of the project. Offshore Wind Cost of Energy Calculations

The general formula for calculating the cost of offshore wind energy can be represented as:

 $COE = (DRF \times ICC) + O&M + LRC + Fees$ AEP

COE = cost of energy DRF = discount rate factor ICC = installed capital costs O&M = operations & maintenance costs LRC = levelized replacement costs AEP = annual energy production Fees = annual insurance, warrantees, etc.

DRF =
$$\frac{d}{1 - 1/(1+d)^{N}} \times \frac{(1 - T \times PVDEP)}{1 - T}$$

d = discount rate

- N = analysis period
- T = marginal income tax rate

PVDEP = present value of depreciation

DOE of USA

DOE of USA has planned for reducing the cost of offshore wind energy from **\$0.27 per kWh in 2010 to \$0.07 per kWh in 2030** by increasing system efficiency and decreasing capital costs through the development of larger systems, innovative components and fully integrated system designs.

They claim, it would result in installed capital cost will **decline by 39% from \$4,259/kW**

to \$2,600/kW, average turbine rating will increase from 3.6 MW to 10.0 MW, and turbine capacity factor will improve from 39% to 45%.

They intend to focus to expand access to the most promising wind resource areas. More than half of the estimated life-cycle cost of an offshore wind turbine farm is determined by following which shall be addressed:

Foundation

Electrical infrastructure,

Installation and logistics,

Operations and maintenance costs.

Potential Path to Reduce Cost of Offshore Wind Energy

In Class 6 Wind			S	uzlon Energy Ltd.
Component	2010	2020	2030	2010 - Land
Installed Capital Cost (\$/kW)	\$ 4,259	\$ 2,900	\$ 2,600	\$ 2,120
Discount Rate Factor (DRF) ⁶	20%	14%	8%	12%
Turbine Rating (MW)	3.6	8.0	10.0	1.5
Rotor Diameter (m)	107	156	175	77
Annual Energy Production / Turbine (MWh)	12,276	31,040	39,381	4684
Capacity Factor	39%	44%	45%	36%
Array Losses	10%	7%	7%	15%
Availability	95%	97%	97%	98%
Rotor Coefficient of Power	0.45	0.49	0.49	.47
Drivetrain Efficiency	0.9	0.95	0.95	0.9
Rated Windspeed (m/s)	12.03	12.03	12.03	10.97
Average Wind Speed at Hub Heights (m/s)	8.8	9.09	9.17	7.75
Wind Shear	0.1	0.1	0.1	.143
Hub Height (m)	80	110	120	80
Cost of Energy (\$/kWh)	0.27	0.10	0.07	0.09
Cost of Energy (\$/kWh) at constant 7% DR	0.12	0.08	0.07	0.08
Courtesy NREL-USA Rs 15.00-	Rs 5.50	Rs 3.85	Rs 5.00	SUZLON
10.00	0.00	0.00	P	OWERING A GREENER TOMORROV

Reduction in Cost of Energy – European Drive

DECC UK Grant for Cost Reduction

Suzion Energy Ltd.

Offshore wind innovation has been given a boost by the Department of Energy and Climate Change (DECC) UK. **Innovation** is key to improving efficiency and has the potential to drive down costs of offshore wind by **25 % by 2020** and **60 % by 2050**.

The DECC grant will give the companies the boost they need to take their innovative designs to the next level, helping cut costs in offshore wind generation.

The DECC grant has been awarded for project ideas @ GBP 4 Million each viz.

- Create an integrated offshore high voltage network management system (OHVMS) for wind farms
- Develop and build innovative HVAC cables
- Develop the design and serial manufacturing process for innovative WindFloat floating foundations for wind turbines

10MW for depths beyond 50m, Principle Power is deploying the WindFloat technology worldwide pursuing projects in Portugal, Oregon and Maine.

Cost of Offshore – Pathway Study

Suzion Energy Ltd.

The cost of offshore in UK have increased since early 2000. This has been attributed to supply chain

bottle necks, also to move to deeper water sites. Recent wind farm projects have indicated that cost has

stabilized around GBP 140/MWh for projects FID in 2011

Financial Investment Decided

UK Government and industry have worked together to shape up the offshore wind industry and investment in new technologies and facilities. The future cost is considered critical in deciding the future size in UK. Participation with 120 related companies has resulted that reducing the cost of offshore wind to 100GBP/MW/h by 2020 is achievable (Pathway Study)

Cost Driver Analysis Approach

Offshore Wind Cost Reduction Pathway Study

39%

Total

Supply chain

Technology

Levelised Cost of Energy (£/MWh 140 120 100 80 60 40 20 0 FID 2011 FID 2014 FID 2017 FID 2020 1 - Slow Progression 2 - Technology Acceleration Source: The Crown Estate New Turbines 17% **Cost Reduction Opportunity by** Competition 6% Front end activity **Technology & Supply Chain as** 5% Scale / Productivity 4% % Reduction in LCOEIndustrial Installation Story.pptx Support structures 3% Other 9%

Sensitivity Modeling Results

Suzion Energy Ltd.

Sensitivity Modelling Results (based on project at FID in 2020)

⁴¹ O&M costs and Decommissioning costs are calculated for each data point (ie site, story, turbine, year combination); whereas the operational lifetime, commodity prices, exchange rates and interest rates are fixed across all datapoints. See Appendix 2 for more details of our assumptions. ⁴² Analysis based on a wind farm at FID in 2020 using 6MW turbines, on site B, in the Supply Chain Efficiency story ⁴³ It should be noted that the impact of each of these sensitivities changes over time. For example, since the turbine increases as a proportion of CAPEX and LCOE between FID 2011 and FID 2020, the impact of the steel price sensitivity also increases over time. The results presented related to a typical project at FID in 2020.

Source : Offshore wind cost reduction pathways study

4

Offshore Requirement

Installation Specific

- IVIUITI TASK Capability
- Higher Installation rate
- Pay load To to T2 installation in single voyage
 - Jackable weight & system capability
 - ~7000 to 8000t
- Crane Optimum Position
 - Crane Capacity (~ 800 to 1200t)
 - Crane Curve /out reach/hook height (~ 115m)
- Accommodation (80 to100 men)
 - Propulsion ; Transit speed & DP 2 capabilities (4xAzimuth thrusters +Tunnel thrus
- Vessel to be in accordance with above, critical DP with Jacki

Site Specific (TIV)

- Range of Water Depth 50 to 70m
- Deck Strength (min. 10t/m2)
- Length of leg (~130m)
- Distance to coast max 100 km
- Relevant Harbor in proximity ~250r

- Large number of new generation installation vessels are needed featuring innovative technologies, capable of operating in deeper waters (up to 75 m) and in harsher sea conditions
- Environment Conditions– Wave Ht. Transit; Stand on Bottom Off ; Operational & Survival - Current Velocity (Typical range 0.9 to 1.2 m/sec, Max. 1.8m/sec)
 Soil Condition – Pre loading capacity / Leg penetration / Spud cans
 Operational Availability – (250 to 290 days a year /aimed 75%)

Suzion Energy Ltd.

Advance TIVs

(Clockwise)
Swire Blue Ocean
MML Vessel
SWATH – WTS Husiman
RWE Innogy Vessel
MPI MV Adventure
Beluga Hochtief

Suzion Energy Ltd.

Foundations: Predominantly monopiles.

Access: from shore via work boats and personnel stepping across onto ladders.

The costs of O&M figures show a spread of values, with the majority in the range £10/MWh to £20/MWh .

Rawdata

Structure Data

Processing Data

http://www.renewableenergyworld.com/rea/news/article/2013/04/cost-modeling-for-offshore-o-m?page=2

Information

O&MStrategy

Strategy Analysis

Results

Typical Port Infrastructure

- •Area for storage : 6 to 25 ha (60.000m2 to 25.000m2)
- Dedicated road between storage and quay side
- •Quay length: approximate 150 m 250 m
- •Quay bearing capacity : 3 to 6 Ton/m2
- •Seabed with sufficient bearing capacity near the pier
- •Draft : minimum 6 m
- •Ware house facilities 1000-1500 m2
- •Access for smaller vessels (pontoon bridge, Barge etc.)
- •Access 365-24/7
- •Access for heavy /oversize trucks
- Helicopter transfer
- Longer estimated period of use for construction + O&I

Offshore Foundations

73% of substructures are monopiles,13% jackets, 6%, tripods,
5% tripiles & 3% gravity based foundations.
There are also two full scale grid connected floating turbines, and two down-scaled prototypes.

Foundation Technologies Comparison

Suzion Energy Ltd.

Cost & Functionally Effective Foundations

. page_nr=426&lang=er

Siting	Monopile	Jacket	Tripod	Tripile	Gravity base	Suction bucket	Floating
Varying soil conditions	0.08	0.1	0.09	0.09	0.03	0.02	0.09
Poor soil conditions	0.06	0.08	0.07	0.07	0.03	0.03	0.08
Sloping sea	0.05	0.08	0.08	0.08	0.02	0.03	0.1
Ice	0.06	0.04	0.04	0.04	0.08	0.06	0.06
Total	0.063	0.075	0.07	0.07	0.04	0.035	0.083
Courtesy : Wind Energy Update						POWERING	A GREENER TOMORROW

Floating Offshore Turbine

Suzion Energy Ltd.

Hywind floating wind : Wind turbine

•Capacity: SWT- 2.3 MW, built by Siemens

- •Weight of turbine: 138 tonnes
- Turbine height: 65 metres
- •Rotor diameter: 82.4 metres

Floatation element and offshore installation

• Built by Technip

• Consists of a steel floater filled with ballast

•Floatation element's draught below sea surface: 100 metres

• Diameter of floatation element: 8.3 metres Total weight: 5300 tonnes.

Diameter at sea surface: 6 metres.

No. of anchor moorings: 3

StatoilHydro and Siemens have jointly developed a special control system to control the movement of the floating structure

Future Developments -Offshore

Suzion Energy Ltd.

Sway AS of Norway -10MW OWT

Private partnership comprising of BP, Caterpillar, EDF, E.ON, Rolls-Royce, Shell, BP, EDF, EON, Caterpillar, the UK Government and Wind Power Limited

Project Partners Risø DTU, DTU Mekanik, TUDelft, DHI, Statoil (NO), National Renewable Energy Laboratory (NREL) (US), and a major Danish wind turbine manufacturer - DeepWind

Hybrid Solution

Suzion Energy Ltd.

SUZLON POWERING A GREENER TOMORROW

Increase in Offshore Installation Cost

s a Function of Distance to the Coast		Distance to coast (km)							
		0-10	10-20	20-30	30-40	40-50	50-100	100-200	> 200
(M)	Turbine	772	772	772	772	772	772	772	772
<	Foundation	352	352	352	352	352	352	352	352
(EUR	Installation	465	476	488	500	511	607	816	964
ost (I	Grid connection	133	159	185	211	236	314	507	702
Ŝ	Others	79	81	82	84	85	87	88	89
	Total cost (EUR/kW)	1 800	1 839	1 878	1 918	1 956	2 131	2 534	2 878
	Scale factor	1	1.022	1.043	1.065	1.086	1.183	1.408	1.598

	Water depth (m)					
10-20	20-30	30-40	40-50			
772	772	772	772			
352	466	625	900			
465	465	605	605			
133	133	133	133			
79	85	92	105			
1 800	1 920	2 227	2 514			
1.000	1.067	1.237	1.396			
	772 352 465 133 79 1 800	10-20 20-30 772 772 352 466 465 465 133 133 79 85 1 800 1 920	10-20 20-30 30-40 772 772 772 352 466 625 465 465 605 133 133 133 79 85 92 1800 1 920 2 227			

As a Function of Water Depth Distance to Coast				Coast	Distance to coast (km)				
		0-10	10-20	20-30	30-40	40-50	50-100	100-200	> 200
~	10-20	1	1.022	1.043	1.065	1.086	1.183	1.408	1.598
<u>۳</u>	20-30	1.067	1.090	1.113	1.136	1.159	1.262	1.501	1.705
Depth	30-40	1.237	1.264	1.290	1.317	1.344	1.464	1.741	1.977
De	40-50	1.396	1.427	1.457	1.487	1.517	1.653	1.966	2.232
C									

Source: EEA,

Installation Cost Reduction By Large Number Installations

Suzion Energy Ltd.

Reduced Cost - Longer Life Cycle

Safety Performance of Offshore Operations

Safety performance of offshore operations compared with construction and all industries, 1996/7 to 2010/11

Note: Offshore operations include both oil and gas and offshore wind, but exclude air transport activities and cover all workers. Construction and all industries cover employees only.

Source: Health and Safety Executive

Low Cost Offshore Wind Measurement

Identified Offshore Challenges 1

- Large turbines
- Large project sizes
- Lower O&M cost
- Holistic design of the tower with the foundation
- Improvements in blade aerodynamics
- Continuously variable transmission drive trains
- Multi-variable optimization of array layouts
- Buoyant concrete gravity base foundations
- Introduction of DC power take-off (incl impact of DC array cables)
- Improvements in jacket manufacturing
- Introduction of direct-drive superconducting drive trains
- Introduction of float out and sink installation of turbine and support
- Increase in turbine power rating

Identified Offshore Challenges 2

- Integrated offshore grid system
 - Higher standardization e.g. platform design
 - o Technology improvements
 - Improved risk management process
- Advance materials and coatings against protection from sea environment
- LIDAR, SODAR and remote wind sensing for wind measurements
- Condition based monitoring and predictive maintenance
- Optimization of design for offshore
- Weather window forecasting
- Improved access vessel
- Advance Installation vessels of foundations, turbines & substations
- Ease to remove sub structure while decommissioning

Offshore Wind Farms Area - Europe Vis a Vis India

Offshore Way Ahead in India

Suzion Energy Ltd.

Enhance green /wind energy potential of the country by formulating plans & policy to introduce offshore component.

Ensure timely regulatory and permitting approvals that too will help reduce financing costs.

Focused effort to integrate the resources and expertise of the country to propel the India to the leading edge of offshore wind technology.

Initially the focus area be on risk reduction to facilitate the initial deployment of offshore wind projects in the Indian waters.

Over the long term, adopt developing new technologies that lower the cost of energy, promote/sustain growth of domestic industry leveraging cheaper labor, cheaper steel fabrication and extending existing Oil & Gas offshore EPC to wind industry there by make offshore wind cost-competitive without compromising high standards of HSE.

Suzion Energy Ltd. Thank You 81271.24 SUZLON 100 SUZLON SUZLON SUZLON Suzlon wind farm in Paracuru, Brazil POWERING A GREENER TOMORROW 34

Industry Stories

High Innovatio

Finance & Supply Cha

Incremental Improvement

3. 'Supply Chain Efficiency'	4. 'Rapid Growth'
• 36GW in Europe by 2020 (17GW in UK)	• 43GW in Europe by 2020 (23GW in UK)
 Incremental technology evolution (e.g. steady 	• High levels of technology evolution across all wind
progress to 5-7MW turbines)	farm elements (e.g. turbines progress rapidly to 5-
Greater compensation, investment, project	7MW+)
collaboration and better risk management	Greater competition, investment, project
• Deeper financial markets, lower risk/lower cost of	collaboration and better risk management
capital	Challenging volume of finance required
1. 'Slow Progression'	2. 'Technology Acceleration'
• 31GW in Europe by 2020 (12GW in UK)	• 36GW in Europe by 2020 (17GW in UK)
Incremental technology evolution, progress limited	High levels of technology evolution across all wind
by market size	farm elements (e.g. turbines progress rapidly to
 Limited competition/economies of scale 	5-7MW+)
 Modest developments in financing solutions, 	• Fragmented supply chain with some improvement in
reduced in risk / cost of capital	collaboration
	 Limited improvement in cost of capital due to
	ongoing changes in technology

Incremental Improvement

chnology

High Innovation

